Should "Appropriate Technology" Be Revived?

Eric Verhoogen, Columbia University

IEA Panel, Feb. 2, 2022

Should "appropriate technology" be revived?

- I have a mixed answer:
 - 1. Much of the diagnosis in the "appropriate technology" literature still rings true, and deserves renewed attention.
 - 2. I am less convinced about the proposed policy remedies.

Strengths of "appropriate technology" literature

- A willingness/commitment to examine the technological details of specific industries.
- Important insights (in e.g. Stewart (1972, 1974, 1978)):
 - 1. Typically only a few, roughly Leontief, technologies are available in a given sector.
 - No continuous choice of techniques.
 - 2. Choice of technique often bundled with choice of product.
 - Higher-quality products typically require newer, more capital-intensive techniques.
 - 3. Technological change localized around particular factor combinations (Atkinson and Stiglitz, 1969).
 - 4. Frontier techniques have been invented in rich countries, and are best suited to conditions there.
- There is growing empirical evidence consistent with these views, especially 4.

Consistent evidence I

 Evidence from biotechnology to counteract crop pests and pathogens (CPPs) (Moscona and Sastry, 2021)

- Have data on CPPs by country, patents that address them (with country origins), international licensing of varieties.
 Find:
 - Most patents deal with local CPPs.
 - There are few patents for CPPs not in US, Europe.
 - "CPP distance" negatively associated with transfers of crop varieties, controlling for country and crop effects.
 - "CPP distance" negatively associated with productivity.

Consistent evidence II

 Recent output growth in Africa has not led to large employment increases in larger firms (>10 employees) in manufacturing (Diao, Ellis, McMillan and Rodrik, 2021)

Consistent evidence III

Exporting ↑ ⇒ Within-firm wage inequality ↑ (Frías, Kaplan and Verhoogen, 2012)

	Δlog mean hourly wage (EIA) (1)	∆mean log daily wage (IMSS) (2)	Δ quantiles of within-firm log wage distribution					Aexport
			10th (3)	25th (4)	50th (5)	75th (6)	90th (7)	share (8)
Panel C. Reduce	ed form and fir.	st stage						
init. log emp. × T_{93-97}	0.032*** (0.010)	0.048*** (0.007)	-0.001 (0.008)	0.030*** (0.009)	0.048*** (0.009)	0.065*** (0.010)	0.065*** (0.012)	0.012** (0.004)
initial log emp.	0.016 (0.006)	0.021*** (0.005)	0.037*** (0.005)	0.029*** (0.006)	0.022** (0.006)	0.015 (0.006)	0.024* (0.008)	$\begin{array}{c} 0.004 \\ (0.002) \end{array}$
Panel D. IV								
Δ export share	2.647** (1.227)	3.928*** (1.443)	-0.058 (0.639)	2.455** (1.113)	3.965*** (1.532)	5.296*** (1.945)	5.333*** (2.026)	ŧ
initial log emp.	0.006 (0.012)	0.007 (0.014)	0.037*** (0.007)	0.021* (0.011)	0.007 (0.015)	-0.004 (0.019)	0.004 (0.020)	

TABLE 2-CHANGES IN WAGE OUTCOMES

Notes: All regressions have N = 5,062 and include six-digit industry-year effects and region (state)-year effects. Export share is fraction of total sales derived from exports. Exporter indicator takes the value 1 if export share is greater than zero, and 0 otherwise. Changes are for periods 1993-1997 or 1997-2001; initial log employment refers to employment as reported in IMSS data in first year of period (1993 or 1997). T_{0-y-y} is indicator variable that takes the value 1 for 1993–1997 period, 0 for 1997-2001. Robust standard errors in parentheses.

Consistent evidence IV

 MNC wage premium greater for college-educated workers (Alfaro-Ureña, Manelici and Vasquez, 2021)

More work needs to be done to track technology choices in manufacturing, but technological "mismatch" seems likely to play a role in these employment and wage patterns.

What is to be done?

- Broad types of policy proposals that have emanated from "appropriate technology" literature:
 - 1. Encouragement for LDC firms to use more labor-intensive technologies, from existing sets of technologies.
 - 2. Encouragement for development of new, more labor-intensive technologies appropriate to LDCs.
- I have concerns about both.

Concerns I

- Using more labor-intensive technologies may carry a short-term, static, productivity cost.
 - Nice recent evidence from Brazil (de Souza, 2021):

 $\mathsf{Tax} \text{ on int'l licenses} \Rightarrow \mathsf{fewer licenses}$

 $\Rightarrow \textit{lower} \text{ employment overall}$

Concerns II

- ► Technologies evolve along "trajectories" (Dosi, 1982).
 - Visualization from patents for fuel cells (Verspagen, 2007):

Concerns II (cont.)

- Coming up with an "appropriate" technological *trajectory* is not a one-shot process.
 - Trajectories involve lots of incremental steps, often by firms competing to push the frontier.
- Paths are endogenous; firms build on what has come before.
 - Very much in spirit of appropriate technology literature.
- Publicly funded R&D seems unlikely to be able to sustain an entire trajectory.
 - There are exceptions:
 - Agriculture (green revolution technologies).
 - Vaccines (e.g. through advance market commitments).
 - But would require massive investments of resources, political capital.
- In absence of such investments, I worry about encouraging industries into dead ends, or branches that are forever behind the frontier.

An anecdote: story of Midea Group

- 1968: Founded as township enterprise near Guangzhou, making bottle lids.
- 1980: Electric fans.
- 1985: Air conditioners.
- 1990: Started producing for Toshiba.
- 1993: Rice cookers.
- 1998: Purchased Toshiba AC compressor factory.
- 2001: Dishwashers, water dispensers.
- 2004: Joint venture with Toshiba.
- 2005: Vacuum cleaners.

... overseas expansion ...

- 2016: Purchased Toshiba's appliances business (~\$.5b) and Kuka robots (~\$5b).
- 2021: 288th on Global Fortune 500 list, revenue >\$40bn, ~150k employees. Largest global producer of appliances.

Company strategy has been to get to the global technology frontier for each new product as quickly as possible.

Closing thoughts

I come back to the idea that policy should aim at promoting activities that generate learning, which tends to spill over.

These may not be the most unskilled-labor-intensive.

The long-run gains would seem to outweigh the short-run lack of labor absorption.

References I

- Alfaro-Ureña, Alfonso, Isabela Manelici, and Jose P. Vasquez, "The Effects of Multinationals on Workers: Evidence from Costa Rican Microdata," 2021. Unpub. paper.
- Atkinson, Anthony and Joseph Stiglitz, "A New View of Technological Change," <u>Economic Journal</u>, 1969, <u>79</u>, 573–578.
- de Souza, Gustavo, "The Labor Market Consequences of Appropriate Technology," 2021. Unpub. paper, University of Chicago.
- Diao, Xinshen, Mia Ellis, Margaret S McMillan, and Dani Rodrik, "Africa's Manufacturing Puzzle: Evidence from Tanzanian and Ethiopian Firms," 2021. NBER working paper no. 28344.
- Dosi, Giovanni, "Technological Paradigms and Technological Trajectories: A Suggested Interpretation of the Determinants and Directions of Technical Change," Research Policy, 1982, 11 (3), 147–162.
- Frías, Judith A., David S. Kaplan, and Eric Verhoogen, "Exports and Within-Plant Wage Distributions: Evidence from Mexico," American Economic Review Papers and Proceedings, 2012, 102 (3), 435–440.
- Moscona, Jacob and Karthik Sastry, "Inappropriate Technology: Evidence from Global Agriculture," 2021. Unpub. paper, Harvard University.
- Stewart, Frances, "Choice of Technique in Developing Countries," Journal of Development Studies, 1972, 9 (1), 99–121.
- _____, "Technology and employment in LDCs," World Development, 1974, 2 (3), 17-46.
- _____, Technology and Underdevelopment, MacMillan, 1978. 2nd edition.
- Verspagen, Bart, "Mapping Technological Trajectories as Patent Citation Networks: A Study on the History of Fuel Cell Research," Advances in Complex Systems, 2007, 10 (01), 93–115.